OPERATOR MATH

NMWWA Short School OHKAY'/Casino Conference Center Monday 13 May 2024; 2.30-5p Wednesday 15 May 2024; 2.30-5p

Peter Nathanson, PE 505.261.2970 peternathanson2018@gmail.com

OPERATOR MATH

Monday 13 May 2024; 2.30-3.40p
References, Problem Solving
Data Management
Fractions, Percent
Fundamental Units, Conversions Area and Volume Geometry

References

* Basic Math Concepts for Water and Wastewater Plant Operators, Joanne Kirkpatrick Price, Technomic Publishing Co., Inc., 1991.
* Applied Math for Water/Wastewater Plant Operators \& Workbook, Texts and Workbooks, Joanne Kirkpatrick Price, Technomic Publishing Co., Inc., 1991.
* Wastewater Math The Basics, Skeet Arasmith, ACR Publications, Inc., 1995.
* The Math Text for Water and Wastewater Technology, 2nd ed., Grover Wright, Wright's Training, 1994.
* Simplified Math for Waterworks Operators, George Mason, ACR Publications, Inc., 1992.

Words and Symbols

Hierarchy of Operations

Multiplication	X	$\mathrm{Q}=\mathrm{V} \times \mathrm{A}$
Multiplication	-	$\mathrm{Q}=\mathrm{V} \cdot \mathrm{A}$
Multiplication	No space	$\mathrm{Q}=\mathrm{VA}$
Multiplication	()()	$\mathrm{Q}=(\mathrm{V})(\mathrm{A})$
Division	\div	$\mathrm{r}=\mathrm{D} \div 2$
Division	-	$\mathrm{r}=\mathrm{D}$
Division	1	$\mathrm{r}=\mathrm{D} / 2$

Word Problems

- Word problems are a series of expressions that fits into an equation. An equation is a combination of math expressions. Suggestions:
- Read the problem entirely Get a feel for the whole problem
- Draw a diagram to describe the problem statement
- List information and the variables you identify Attach units of measure to the variables (gallons, miles, inches, etc.)
- Define what answer you need, as well as its units of measure
- Set up equation(s), solve for variable, populate with data
- Work in an organized manner

Working clearly will help you think clearly

- Draw and label all graphs and pictures clearly
- Note or explain each step of your process; this will help you track variables and remember their meanings
- Look for the "key" words (above) Certain words indicate certain mathematical operations.

Data Management - Averaging

The Concept

Used to analyze plant performance
$>$ day-to-day
$>$ unit process or entire plant
Difficult to recognize trends in
performance due to the variation in the data
Averaging can frequently sort out that variation by applying some basic statistical concepts to the data

Data Management - Averaging Definition of Terms

Average: one number that may be considered typical of a group of data
$>$ mean, or arithmetic mean
$>$ median, and
$>$ mode

* Mean, or arithmetic mean: sum of all measurements/\# of measurements

Median: the middle value of a data group that has been arranged according to value, usually in ascending order (low to high)
$>$ for an even \# of measurements the median would be halfway between the 2 middle values
Mode: the value that occurs most frequently in a data group
$>$ there may be no mode, 1 mode, 2 modes (bimodal), or more
Mean vs median: if the data set contains extreme values (unusually high or low) than the mean will be "pulled" in that direction
$>$ in such cases the median may be more representative of the data set than the mean

Data Management - Averaging

More Terms

Moving average: the calculation of an arithmetic mean that drops the oldest value and adds the newest value
$>$ moving averages are good indications of system operation trends since they "smooth out" data fluctuations

Weighted average: used to determine the average of a large data set $>$ Arrange the data into groups with $5-, 10-$, ect. point spans depending on the point span of the original data set
$>$ Tabulate the "frequency" - the number of data points in each grouping
$>$ Calculate the average of each group based on the point span
$>$ Multiply the frequency by the average for each group
$>$ Sum those products \& divide this sum by the total frequency (total number of data points in data set)

Data Management - Averaging

Determine the arithmetic mean, median and mode for the following data sets:
MPN/100 ml: 260, 220, 240, 290, 360, 3310, 415, 280, 240
mg / L influent BOD: 170, 190, 180, 240, 190, 160, 175
mg/L MLSS: 2450, 2610, 2290, 2540, 2650, 1820, 2210, 2290

Calculate the first five 7-day moving averages for the following data:

day $1 \mathrm{SVI}=110$	day $4 \mathrm{SVI}=123$	day $7 \mathrm{SVI}=133$	day $10 \mathrm{SVI}=122$
day $2 \mathrm{SVI}=105$	day $5 \mathrm{SVI}=140$	day $8 \mathrm{SVI}=126$	day $11 \mathrm{SVI}=124$
day $3 \mathrm{SVI}=113$	day $6 \mathrm{SVI}=117$	day $9 \mathrm{SVI}=131$	

Compare the weighted average and arithmetic mean for the following data:

170	126	182	146	168	145	115	108	
115	147	141	159	174	151	136	110	
122	164	136	129	192	137	144	121	
105	137	107	118	181	123	153	143	
118	153	124	120	164	117	140	181	

Fractions

Anatomy: top \# or unit = numerator bottom \# or unit = denominator

Addition and subtraction: only add or subtract numerators and only when denominator is the same; if denominators are different then must convert 1 or both fractions to same denominator

Fractions

Multiplication: multiply numerators, multiply denominators, then reduce to lowest common factors
Division: invert $2^{\text {nd }}$ fraction (flip numerator \& denominator) and follow steps for multiplication
Convert integer to fraction by putting a " 1 " in denominator
Convert fraction to number by dividing numerator by denomination and express as whole \# or decimal

Percent, \%

Specific application of fractions

Percent means parts per 100
$-26 \%=26$ parts out of 100 or $26 / 100$

- Can also be expressed as a decimal 0.26
\% may not always be parts per 100
- What is the absentee rate for a class of 26 students with 6 absent?
Converting \% to decimal and decimal to \% means simply moving decimal 2 places right or left (ahhh, the metric system...!)

Application of Percent

Removal efficiencies

- Clarifier influent 150 mg/L; effluent $12 \mathrm{mg} / \mathrm{L}$
$-\%$ rem $=(150-12) \mathrm{mg} / \mathrm{L} \times 100 \%=92 \%$ $150 \mathrm{mg} / \mathrm{L}$
Pump or motor efficiencies
$-\mathrm{P}_{\text {eff }}$ or $\mathrm{M}_{\text {eff }}=\mathrm{HP}$ out $/ \mathrm{HP}$ in $\times 100 \%$
- Can also calculate HP data if you know efficiency and 1 of the HPs

Mg / L to Percent

- Dilute concentrations in water can be expressed as mg / L or ppm, and can also be expressed as a \%.
- $\mathrm{Mg} / \mathrm{L} \times \mathrm{L} / 1000-\mathrm{mL} \times \mathrm{mL} / \mathrm{g} \times \mathrm{g} / 1000-\mathrm{mg}=\mathrm{ppm}=$ 1 part per 1,000,000 parts
- \% = parts per hundred = 1 part per 100 parts
- 10,000 ppm = 1\%; Proof:

10,000 parts ; canceling zeros $=1 / 100=1 \%$
1,000,000 parts

Mg/L to Percent Examples

- A chemical is to be dosed at $25 \mathrm{mg} / \mathrm{L}$. Express the dosage as \%.
ANS = 0.0025\%

Express 120 ppm as \%.
ANS = 0.012\%

HTH used for disinfection has concentration of 65%. Express the concentration as mg / L.

$$
\text { ANS }=650,000 \mathrm{mg} / \mathrm{L}
$$

Percent Strength

The strength of a solution can be expressed as a percent by weight:
$\%$ strength $=\frac{w t ~ o f ~ s o l u t e ~}{w t ~ o f ~ s o l u t i o n ~} \times 100$, where
solute $=$ weight of chemical being added
solution = the combined weight of solute plus liquid (or solvent)

Percent Strength Examples

What is the percent strength of a solution that contains 25 \# of chemical and 400 \# of water?

$$
\text { ANS = } 5.9 \%
$$

What is the percent strength of a solution if 40 pounds of chemical is added to 120 gallons of water?

$$
\text { ANS = } 3.8 \%
$$

Units - The Fundamentals

Expressing 1 dimension

Expressing 2 dimensions

Expressing 3 dimensions

What is the fourth dimension?

- Stand-alone
- As denominator

Common Equivalents (Handout Reference)

1. Linear Measurements
> 1 inch $=2.54 \mathrm{~cm}$
> $1 \mathrm{foot}=30.5 \mathrm{~cm}$
> 1 meter $=100 \mathrm{~cm}=3.281 \mathrm{ft}=$ 39.4 inches
> 1 acre $=43,560 \mathrm{ft}^{2}$
> 1 yard $=3$ feet
2. Volume
> 1 gal. $=3.78$ liters
> $1 \mathrm{ft}^{3}=7.48$ gals.
> 1 liter $=1000 \mathrm{~mL}$
> 1 acre foot $=43,560 \mathrm{ft}^{3}$
3. Weight
$>1 \mathrm{ft}^{3}$ of water $=62.4 \mathrm{lbs}$
$>1 \mathrm{gal}=8.34 \mathrm{lbs}$
$>1 \mathrm{lb}=453.6$ grams
$>1 \mathrm{~kg}=1000 \mathrm{~g}=2,2 \mathrm{lbs}$
$>1 \%=10,000 \mathrm{mg} / \mathrm{L}$
> $1 \mathrm{lb}=16 \mathrm{oz}$ dry wt.
4. Pressure
> 1 ft of head $=0.433 \mathrm{psi}$
> $1 \mathrm{psi}=2.31 \mathrm{ft}$ of head
5. Flow
> $1 \mathrm{cfs}=448 \mathrm{gpm}$
> $1 \mathrm{gpm}=1440 \mathrm{gpd}$

Example

Question: How many feet are in 18 inches Known: 1 foot $=12$ inches
ANS $=1.5 \mathrm{ft}$

Example

Question: How many gallons are in $3291 \mathrm{ft}^{3}$?
Known: $1 \mathrm{ft}^{3}=7.48$ gallons
ANS $=24,617 \mathrm{gal}$

Example

Question: how many feet are in $1 / 4$ mile?
Known: 1 mile = 5280 ft
ANS = 1320 ft

Example

Question: convert $3,920 \mathrm{ft}^{3}$ to yd^{3}
Known: $1 \mathrm{yd}^{3}=27 \mathrm{ft}^{3}$
ANS $=145 \mathrm{yd}^{3}$

Example

Question: convert 3,211,000 GPD to MGD
Known: $1 \mathrm{MGD}=1,000,000 \mathrm{GPD}$
ANS = 3.211 MGD

Circumference of a Circle (1-dim)

The circumference, C of a circle is the length or distance around the edge of the circle.
$C=\pi \times$ diameter, or $C=\pi \times 2 r(r=1 / 2$ diameter $)$

The circumference of a tank is 325 ft . What is the diameter of the tank?

ANS = 103 ft

Area Calculation

- Area measurements defines the size or surface of an object. Sometimes an area is described as the X -section (cross section) of an object.
- U.S. units of area:

1. Square inches $=i n^{2}$
2. Square feet $=\mathrm{ft}^{2}$
3. Square yards $=y d^{2}$
4. Square mile $=\mathrm{mi}^{2}$

Rectangular Area

A room needs carpeting. If the room measures 25 ft by 19 ft how much carpet is needed to cover the floor?

ANS $=475 \mathrm{ft}^{2}$

- If one roll of carpet covers $80 \mathrm{ft}^{2}$, how many rolls of carpet are needed?
ANS = 6 rolls

475 sq. ft.

A sedimentation tank is 75 ft long and 35 ft wide. What is the surface area of the water tank?

ANS $=2625 \mathrm{ft}^{2}$

Circular Area Formulae

- Circle:

Area $=(0.7854) \times\left(\right.$ diameter $\left.^{2}\right)$

Area $=\pi$ or (3.1416) $\times\left(\right.$ radius $\left.^{2}\right)$

Calculate the area of the circle shown.

ANS $=19.6 \mathrm{ft}^{2}$

A circular clarifier has a diameter of 40 ft . What is the surface area of the clarifier?

ANS $=1256 \mathrm{ft}^{2}$

What is the total surface area (top + side) of a tank with a circumference of 155 ft and a sidewall depth of 25 ft ?
ANS $=5787 \mathrm{ft}^{2}$

Volume Calculation

- Volume measurements define the amount of space that an object occupies.
- Some U.S. units of Volume:

1. Cubic inches $=$ in 3
2. Cubic feet $=\mathrm{ft}^{3}$
3. Cubic yards $=y^{\prime} \mathrm{ds}^{3}$
4. Gallons per cu.ft. $=7.48$ gals
5. Cylinder $=0.7854 \times\left(d^{2}\right) \times\left(3^{\text {rd }}\right.$ dimension $)$
6. Cylinder $=3.14 \times\left(r^{2}\right) \times\left(3^{\text {rd }}\right.$ dimension $)$

Rectangular Volume

Calculate the volume of a tank that is 35 ft long, 22 ft wide and 11 ft deep.

ANS $=8470 \mathrm{ft}^{3}$

- How many cubic yards of backfill would be required fill a $3,500 \mathrm{ft}$ trench, which is 4.5 ft wide and 6 ft deep?
- (Hint) $27 \mathrm{ft}^{3}$ per $1 \mathrm{cu} . \mathrm{yd}$.

ANS $=3500 \mathrm{yd}^{3}$

- What is the volume of a tank which has a diameter of 10 ft and a height of 12 ft ?
- Hint: the $3^{\text {rd }}$ dimension is the height of the tank

$$
\text { ANS }=942 \mathrm{ft}^{3}
$$

How many gallons of water will a storage

 tank hold if it has a 27 ft diameter and 40 ft height?

What is the volume of a 1 mile long 12 inch diameter pipe?
ANS $=4145 \mathrm{ft}^{3}$ or $31,003 \mathrm{gal}$

- How many gallons water will be required to fill a 950 ft long pipe and 18 in diameter?

ANS $=12,551 \mathrm{gal}$
950 ft

- How many cubic yards of backfill would be required to fill a $5,500 \mathrm{ft}$ trench that is 6 ft wide and 8 ft in depth after a 36 inch diameter water main pipe has been laid in the trench?
ANS $=8339 \mathrm{yd}^{3}$

Cones

Calculate the volume of the cone, where $V=1 / 3$ (volume of a cylinder), then
$\mathrm{V}=(0.7854)\left(\mathrm{D}^{2}\right)$ (Third dimension), and 3

$$
V=(0.7854)(4 \mathrm{ft})^{2}(6 \mathrm{ft})
$$

3

ANS $=25 \mathrm{ft}^{3}$

Spheres

Find the volume of the sphere, where $\mathrm{V}=\pi / 6 \times$ Diameter ${ }^{3}$

ANS $=14,137 \mathrm{ft}^{3}$ or $105,746 \mathrm{gal}$

OPERATOR MATH

Monday 13 May 2024; 3.50-5p

Electricity, Temperature

Wastewater Characteristics: mg/L and \%
Preliminary Treatment Grit Removal Flow and Velocity
Clarifier Detention Time, Surface Loading Rate, Weir Overflow Rate \& Removal Efficiencies

The Ohm's Law Pie Chart

The Ohm's Law Pie Chart Shortcut Calculations

Current, I (Amps)

"Flow" of electricity defined as

one Coulomb per second (6.24(10) ${ }^{19}$ electrons)

Voltage, V (Volts)

* Defined as Electromotive Force, or EMF

*Similar to pressure in a water system

Resistance, R (Ohms)

The unit of resistance to current flow - similar to headloss in a water system

* An ohm is the amount of resistance that allows 1 amp of current to flow when the applied voltage is 1 volt

Power, P (Watts or HP)

$>$ A function of both voltage and amps:

* Volts X Amps = Watts
$>$ Wattage is a measure of work
>1000 watts $=1 \mathrm{KW}=1.34 \mathrm{HP}$, or
$>1 \mathrm{HP}=746$ watts $=0.746 \mathrm{KW}$
$>(\mathrm{FYI}) \mathrm{RPM}=(2 \times$ Freq, $\mathrm{Hz} \times 60) / \#$ of poles

Temperature Conversion

- two scales used to report temperature:
- Fahrenheit (F°) = English scale
- Celsius (C°) = metric scale
- $\mathrm{C}^{\circ}=5 / 9\left(\mathrm{~F}^{\circ}-32\right)$ or
- $\mathrm{C}^{\circ}=0.55\left(\mathrm{~F}^{\circ}-32^{\circ}\right)$ or
$\mathrm{C}^{\circ}=\left(\mathrm{F}^{\circ}-32^{\circ}\right) \div 1.8$
- $\mathrm{F}^{\circ}=\left(9 / 5 \times \mathrm{C}^{\circ}\right)+32^{\circ}$ or
- $\mathrm{F}^{\circ}=\left(1.8 \times \mathrm{C}^{\circ}\right)+32^{\circ}$

WHAT "UNITS" ARE USED IN WASTEWATER MEASUREMENTS?

- THE BRITISH (or ENGLISH) SYSTEM (FEET, GALLONS, POUNDS)
- THE SYSTEM INTERNATIONAL (SI) or METRIC SYSTEM
(METERS, LITERS, GRAMS)

UNITS

CHEMICAL "INGREDIENTS": WEIGHT per VOLUME
such as milligrams per liter (abbreviated as mg/L)

EXAMPLE: The dissolved oxygen content of the wastewater was 5 mg / L (meaning there was five (5) milligrams of oxygen for each liter of wastewater)

UNITS

BIOLOGICAL "INGREDIENTS": NUMBER per VOLUME

such as Colony Forming Units per milliliter (abbreviated as cfu/mL)

EXAMPLE: The bacteria

 concentration in the wastewater was 25 cfu/ 100 mL (meaning there were twenty five (25) colonies of bacteria in each 100 milliliters of wastewater)
MILLIGRAMS PER LITER or PARTS PER MILLION ???

ONE LITER OF WATER WEIGHS 1000 GRAMS (or ONE MILLION MILLIGRAMS). THEREFORE, ONE MILLIGRAM OF A CONTAMINANT, IN ONE LITER OF WATER WOULD BE "ONE PART PER MILLION" (ppm).

WHAT'S IN WASTEWATER?

$0.1 \%=? \mathrm{ppm}$

$100 \%=1,000,000 \mathrm{ppm}$
$10 \%=100,000 \mathrm{ppm}$

$$
1 \%=10,000 \mathrm{ppm}
$$

$0.1 \%=1,000 \mathrm{ppm}$ or $1,000 \mathrm{mg} / \mathrm{L}$

$1000 \mathrm{mg} / \mathrm{L}$ of SOLIDS MEANS:

AN AVERAGE DOMESTIC WASTEWATER (SEWAGE) CONTAINS:

ONE THOUSAND $(1,000)$ MILLIGRAMS OF SOLIDS IN EACH LITER OF WASTEWATER

SOLIDS

SUSPENDED DISSOLVED SETTLEABLE

NON-
sETTLEABLE

SOLIDS

TOTAL SOLIDS

 DISSOLVED

 DISSOLVED ($800 \mathrm{mg} / \mathrm{L}$)

 ($800 \mathrm{mg} / \mathrm{L}$)}SUSPENDED
(200 mg/L)

SETTLEABLE
NON(130 mg/L) SETTLEABLE ($70 \mathrm{mg} / \mathrm{L}$)

HORIZONTAL GRIT CHAMBER

EXPERIENCE HAS SHOWN A VELOCITY AROUND $\underline{1} \mathrm{ft} / \mathrm{sec}$ IS BEST FOR GRIT REMOVAL

MAINTAIN A CONSTANT FLOW THROUGH THE CHAMBER

BECAUSE INFLUENT QUANTITIES VARY, YOU MUST:

VARY THE NUMBER OF CHAMBERS

USE A PROPORTIONAL (aka SUTRO) WEIR AT THE OUTLET OF THE CHAMBER

WHAT'S A

PROPORTIONAL WEIR?

A SPECIALLY DESIGNED CONSTRICTION TO GO IN THE EFFLUENT END OF A GRIT CHAMBER

FLOW THROUGH THE WEIR IS

 PROPORTIONAL TO THE HEIGHT OF THE WATER IN THE CHANNEL
HOW A PROPORTIONAL WEIR WORKS:

$Q=\underline{V} \times A$

WHERE: Q IS

 THE FLOW: V IS THE VELOCITY. AND A IS THE CROSSSECTIONAL AREA

VELOCITY = 1 FPS

HOW A PROPORTIONAL WEIR WORKS

$\mathrm{V}=\mathrm{Q} / \mathrm{A}$

AS Q

 INCREASES, A MUST DECREASE FOR V TO REMAIN AT 1 FPS.

SUTRO (PROPORTIONAL) WEIR (AT HIGHER FLOWS)

VELOCITY = 1 FPS

HOW A PROPORTIONAL WEIR WORKS

VELOCITY remains = 1 FPS

HOW TO MEASURE VELOCITY IN A GRIT CHAMBER

ONE EASY WAY IS TO DROP IN SOMETHING THAT FLOATS AND TIME IT OVER A MEASURED DISTANCE

EXAMPLE: YOU DROP IN A STICK AND IT TAKES $\underline{20}$ SECONDS TO FLOAT $\underline{25}$ FEET.

REMEMBER...

HEAVY, INORGANIC MATERIAL REMOVED IN GRIT CHAMBER (BY REDUCING THE VELOCITY)

IF THE VELOCITY IS FURTHER REDUCED...

- ORGANIC SOLIDS WILL SETTLE OUT

 - THE VELOCITY OF FLOW IN A SETTLING BASIN $=2 \mathrm{ft} / \underline{m i n}$
RECALL...

\longrightarrow
 SEWER: $\underline{2} \mathrm{fps}=120 \mathrm{ft} / \mathrm{min}$
 (NO SETTLING)

$\longrightarrow \longrightarrow$
GRIT CHAMBER: $1 \mathrm{fps}=60 \mathrm{ft} / \mathrm{min}$ (HEAVY INORGANICS SETTLE OUT)

SETTLING BASIN
VELOCITY $=2 \mathrm{ft} / \mathrm{min}$
(REMOVES SETTLEABLE SOLIDS)

CLARIFIER OPERATION

THREE IMPORTANT FACTORS:

1. DETENTION TIME = TANK VOL / FLOW

2. SURFACE LOADING = FLOW, gpd / SURFACE AREA, sq ft
3. WEIR OVERFLOW RATE = FLOW, gpd / WEIR LENGTH, ft

HORIZONTAL CLARIFIER

FLIGHTS or SCRAPERS

CLARIFIER OPERATION

THREE IMPORTANT FACTORS:

1.DETENTION TIME

The time it takes for water to flow through the tank

$D T=$ TANK VOL/ FLOW

DETENTION TIME

EXAMPLE: VOLUME $=65,000 \mathrm{gal} ; \mathrm{FLOW}=550$ $\mathrm{gal} / \mathrm{min}$ then; $D T=65,000 / 550=118 \mathrm{~min}(1.9 \mathrm{hr})$

$$
\begin{gathered}
\text { D.T. }=317,925 \mathrm{gal} / 2,500,000 \\
\mathrm{gal} / \text { day }=0.13 \text { day } \times 24 \mathrm{hrs} / \text { day }= \\
3.1 \text { hours }
\end{gathered}
$$

2. SURFACE LOADING

SURFACE LOADING = FLOW, gal/day DIVIDED BY THE SURFACE AREA, sq ft

EXAMPLE: Flow $=790,000 \mathrm{gal} /$ day: $20^{\prime} \times 60^{\prime}$ clarifier: surface area of clarifier $=1200$ sq ft: SURFACE LOADING =

790,000 gpd / 1200 sq-ft = 658 gpd/sq-ft

EFFLUENT WEIR

WEIR LENGTHS

Weir Length $=\underline{A}+\underline{B}+\underline{C}$

3. WEIR OVERFLOW RATE

WOR = FLOW, gal/day/ weir length, ft
 OVERFLOW RATE IN A TANK HAVING 80' OF WEIR LENGTH THAT RECEIVES 790,000_GPD? I

WOR $=790,000 \mathrm{gpd} / 80 \mathrm{ft}=9875 \mathrm{gpd} / \mathrm{ft}$

WEIR OVERFLOW RATE

GIVEN: A 60' DIAMETER CIRCULAR

 CLARIFIER, 15' DEEP, RECEIVES 2.5 MGD. WHAT IS THE DETENTION TIME AND THE WEIR OVERFLOW RATE?$$
\begin{gathered}
\text { VOL }=\left[0.7854(60 \mathrm{ft})^{2} \times 15 \mathrm{ft}\right] \times 7.48 \\
\text { gal/ft } \mathrm{ft}^{3}=317,925 \text { gallons }
\end{gathered}
$$

WEIR LENGTH=TD $=3.14 \times 60^{\circ}$

$$
=188^{\prime}
$$

WHAT IS THE SURFACE LOADING FOR THE SAME CLARIFIER?

SURFACE LOADING $=$ FLOW/SURFACE AREA
$=2,500,000 \mathrm{gal} /$ day $/ 0.7854 x$ $(60 \mathrm{ft})^{2}=653 \mathrm{gpd} / \mathrm{ft}^{2}$
(WITHIN THE RANGE OF 300 to $1200 \mathrm{gpd} / \mathrm{ft}^{2}$)

CLARIFIER OPERATING RANGES

PRIMARY SECONDARY

DETENTION TIME, hr 2-3 2-3
Weir overflow 10,000- 5,000-
rate, gpd/ft $20,000 \quad 15,000$
Surface loading, 300-
300$g p d / f t^{2}$

1,200

DETERMINING EFFICIENCIES

$\%$ EFFICIENCY $=\frac{(I N-O U T)}{I N} \times 100 \%$

EXAMPLE: Given an influent conc. of suspended solids $=220 \mathrm{mg} / \mathrm{L}$, and an effluent conc. of suspended solids $=\underline{8}$ mg / L, what is the efficiency of the clarifier?
$\%$ Efficiency $=(\underline{220}-\underline{8}) / \frac{220 \times 100 \%}{=96 \%}$

TYPICAL CLARIFIER EFFICIENCIES

PARAMETER

Settleable Solids
Suspended Solids
Total Solids
BOD
Bacteria
pH
\% EFF Avg
90-99
97
40-60
50
10-15
10
20-50 35
25-75
50
no change

OPERATOR MATH

Wednesday 15 May 2024; 2.30-3.40p
Ponds Detention Time and Loading
Trickling Filter Geometry and Loading
Rotating Biological Contactor Loading Secondary Clarifiers

PONDS DESIGN CRITERIA

DETENTION TIME:

POND VOLUME,acre-ft
INFLUENT RATE, acre-ft/day
-HYDRAULIC LOADING: INCHES/DAY
-POPULATION LOADING:
PERSON/ACRE

PONDS DESIGN CRITERIA

(cont'd)

-ORGANIC LOADING:
LBS BOD/DAY/ACRE

ORGANIC LOADING:

(BOD mg/L) (FLOW,MGD) (8.34 \#/gal) POND AREA, acres

ARITHMETIC REVIEW

LENGTH

WIDTH

SURFACE AREA $=L \times W$
1 ACRE $=43,560 \mathrm{SQ}-\mathrm{FT}$

> EACH PERSON DISCHARGES 75-100 GALLONS of WASTEWATER PER DAY

0.2 POUNDS BOD/PERSON

CALCULATING BOD LOADING

CONCENTRATION,ppm X FLOW, MGD $\times 8.34 \mathrm{lbs} / \mathrm{gal}=$ POUNDS/DAY

What is the daily BOD loading given the following: FLOW=300,000 gal/day; $B O D=225 \mathrm{mg} / \mathrm{L}$?

225 ppm $\times 0.3$ MGD $\times 8.34 \mathrm{lbs} / \mathrm{gal}$
$=563 \mathrm{lbs} /$ day
AT AN ALLOWABLE LOADING OF
35 lbs BOD per day/acre, how large of a pond is necessary?
$\frac{563 \text { \#/day }}{35 \text { \#/day/acre }}$

$$
=16 \text { acres }
$$

L SOLIDS LOADING RATE
SLR=Ibs of SOLIDS/day / ft²

$$
\mathrm{lbs} / \mathrm{day}=C \times Q \times 8.34
$$

Where: $C=$ Suspended Solids concentration in ppm; $Q=$ flow in millions of gallons/day, and 8.34 is lbs/gallon

HOW MANY ACRES OF PONDS (WITH ZERO DISCHARGE) WOULD BE NEEDED TO SERVE 650 PEOPLE IN So. NEW MEXICO?

ASSUME NO PERC \& 60" per year EVAP

(650 cap $\times 100 \mathrm{gpd} /$ cap $) / 7.48 \mathrm{gal} / \mathrm{ft}^{3}=8690 \mathrm{ft}^{3} /$ day $8690 \mathrm{ft} /$ /day $\times 365$ day $/ \mathrm{yr} \times \mathrm{yr} / 60 \mathrm{in} \times 12 \mathrm{in} / \mathrm{ft}$
$=634,370 \mathrm{ft}^{2}$
$634,370 \mathrm{ft}^{2} / 43,560 \mathrm{ft}^{2} /$ acre $=14.6$ acres
(plus allowances for rain)

POND PERFORMANCE

REMOVAL EFFICIENCIES

BOD/SS
 90-95\%

FECAL COLIFORM 99\%

SURFACE LOADING RATES

TYPE AEROBIC ANAEROBIC FACULTATIVE TERTIARY

MECH AERATED

lbs BOD/acre/day

 60-200$$
200-1000
$$

15-30
5-15
20-400

REVIEW OF ARITHMETIC

65 ft

Example: What is the surface area of a trickling filter that is 65' in diameter: SA =0.785 x $65 \mathrm{ft} \times 65 \mathrm{ft}=3317 \mathrm{sq}-\mathrm{ft}$

REVIEW OF ARITHMETIC

EXAMPLE: WHAT IS THE VOLUME of a 65' diameter trickling filter with 8 ft of media?

VOLUME $=0.785 \times 65 \mathrm{ft} \times 65 \mathrm{ft} \times 8 \mathrm{ft}=$ 26,533 cu-ft

REVIEW OF ARITHMETIC

HOW MANY 1000 cu ft ARE THERE IN THIS FILTER?

26,533 cu-ft / $1000=26.533$

A TRICKLING FILTER PLANT RECEIVES 300,000 gal/day, with a BOD $=230 \mathrm{mg} / \mathrm{L}$

The trickling filter is 65 ft in diameter with 8 ft of rock media. Is this plant a standard rate or high rate trickling filter?

Hydraulic loading $=\mathrm{gpd} / \mathrm{sq}-\mathrm{ft}$ $=300,000 \mathrm{gal} /$ day $/ 0.785 \times(65 \mathrm{ft})^{2}$
$=90.4 \mathrm{gpd} / \mathrm{sq}-\mathrm{ft}$
Organic Loading $=\mathrm{lbs} \mathrm{BOD} / 1000 \mathrm{cu}-\mathrm{ft}$
$=230 \mathrm{mg} / \mathrm{L} \times 0.3 \mathrm{MGD} \times 8.34$ \#/gal
$=576$ \#/day/26.5 $1000 \mathrm{cu}-\mathrm{ft}$
$=22 \mathrm{lbs}$ BOD per day /1000 cu-ft

CLASSIFICATIONS OF TRICKLING FILTERS

BASED ON HYDRAULIC AND BOD LOADING...

HYDRAULIC LOADING:

GPD/SQ-FT
BOD LOADING:
Lbs BOD per day / 1000 cu-ft

CLASSIFICATIONS OF TRICKLING FILTERS

BASED ON HYDRAULIC AND BOD LOADING...

\author{

- STANDARD-RATE
 -HIGH-RATE
 -ROUGHING FILTERS
}

ROUGHING FILTER
 PRECEEDS SOME OTHER FORM OF SECONDARY TREATMENT (SUCH AS ACTIVATED SLUDGE)

STANDARD-RATE

PARAMETER VALUE

$$
\begin{array}{ll}
\text { FLOW } & \underline{25-100} \mathrm{gpd} / \mathrm{sq}-\mathrm{ft} \\
\text { BOD } & \underline{5-25 \mathrm{lbs}} \mathrm{BOD} \text { per day/ } \\
& 1000 \mathrm{cu}-\mathrm{ft}
\end{array}
$$

- \% BOD removal 90-95 \%

HIGH-RATE TRICKLING FILTER

PARAMETER
 VALUE

- FLOW (rock) 100-1000 gpd/sq-ft

FLOW
(SVNTHETTC) 350-2100

HIGH-RATE TRICKLING FILTER

PARAMETER

BOD (rock) 25-100 lbs BOD per day/1000 cu-ft
BOD (synthetic) 50-300
BOD removal
90-95 \%

ROUGHING FILTER

PARAMETER
 VALUE

FLOW

(same as high-rate)
BOD
100-300 lbs BOD
per day/1000 cu-ft
BOD removal 80-85 \%

COMPARISON OF HYDRAULIC LOADINGS-gpd/sq-ft

Standard Rate 25 to 100

High Rate (rock)
100 to 1000 (synthetic media)

Roughing
100 to 2100

COMPARISON OF ORGANIC LOADING: lbs BOD per day/1000 cu-ft

Standard Rate 5 to 25

 High Rate (rock) 25 to 100 (synthetic) 50 to 300Roughing 100 to 300

ROTATING BIOLOGICAL CONTACTORS

DESCRIPTION OF AN RBC

-ROTATING
SHAFT (UP TO 25 ft LONG)

-ROUND
PLASTIC DISKS
(USUALLY 12 ft DIAMETER

MEDIA IS AVAILABLE AS STANDARD, MEDIUM OR HIGH DENSITY

A CONVENTIONAL RBC WITH STANDARD MEDIA, 25 ft LONG by 12 ft DIAMETER $=>110,000$ ft^{2} of media surface area!
(high density $>165,000 \mathrm{ft}^{2}$)

USUALLY A "ONCE THRU" OPERATION - NO RECIRCULATION

LOADING CALCULATIONS

ORGANIC LOADINGS ARE BASED ON SOLUBLE BOD

ORGANIC LOADING = lbs SOLUBLE BOD per day per $1000 \mathrm{ft}^{2}$ of MEDIA

SOLUBLE BOD IS MEASURED ON FILTERED WASTEWATER

BOD REVIEW:

SAMPLE OF FILTERED
WASTEWATER IS STORED IN BOD
BOTTLES FOR 5 days at $20^{\circ} \mathrm{C}$.
DISSOLVED OXYGEN IS MEASURED AT THE BEGINNING AND THE END TO DETERMINE THE OXYGEN DEMAND

BOD REVIEW EXAMPLE: BOD $=300 \mathrm{mg} / \mathrm{L}$

$100 \mathrm{mg} / \mathrm{L}$ SOLUBLE
$100 \mathrm{mg} / \mathrm{L}$ SUSPENDED

RAW

AFTER PRIMARY SETTLING

ESTIMATING SOLUBLE BOD

SOLUBLE BOD CAN BE ESTIMATED ON THE BASIS OF TOTAL BOD AND SUSPENDED SOLIDS (SSS)

SOLUBLE BOD, $\mathrm{mg} / \mathrm{L}=$
TOTAL BOD, mg /L - $(K \times$ SSS, $\mathrm{mg} / \mathrm{L})$
Where $K=0.5-0.7$ (for sewage)

EXAMPLE:

AN RBC RECEIVES AN INFLUENT BOD of $220 \mathrm{mg} / \mathrm{L}$ and $230 \mathrm{mg} / \mathrm{L}$ SUSPENDED SOLIDS. WHAT IS THE ESTIMATED SOLUBLE BOD IN THIS WASTEWATER?

SOLUBLE BOD, mg/L =
$220 \mathrm{mg} / \mathrm{L}-(0.5 \times 230 \mathrm{mg} / \mathrm{L})=$
$220 \mathrm{mg} / \mathrm{L}-115 \mathrm{mg} / \mathrm{L}=105 \mathrm{mg} / \mathrm{L}$

ORGANIC LOADING EXAMPLE (con't)

WHAT IS THE ORGANIC LOADING FOR THE FOLLOWING RBC?

- $\mathrm{FLOW}=2.5 \mathrm{MGD}$
- SOLUBLE BOD $=105 \mathrm{mg} / \mathrm{L}$
- MEDIA SURFACE AREA $=800,000 \mathrm{ft}^{2}$

Lbs per day

mg / L

ORGANIC LOADING $=$

$105 \mathrm{mg} / \mathrm{L} \times 2.5 \mathrm{MGD} \times 8.34 \mathrm{\#}-\mathrm{L} / \mathrm{mg}-$ Mgal 800,000 ft²/1000
$=2.7 \mathrm{lbs}$ BOD per day $/ 1000 \mathrm{ft}^{2}$

HYDRAULIC LOADING

HYDRAULIC LOADING IS:
GALLONS per DAY / FT ${ }^{2}$ of MEDIA
WHAT IS THE HYDRAULIC LOADING FOR THE PREVIOUS EXAMPLE?
$2,500,000 \mathrm{gpd} / 800,000 \mathrm{ft}^{2}=3.1 \mathrm{gpd} / \mathrm{ft}^{2}$

TYPICAL LOADING RATES

HYDRAULIC LOADING

RANGE

BOD REMOVAL
NITROGEN REMOVAL
1.5 - 6 GPD $/ \mathrm{ft}^{2}$
1.5-1.8 GPD/ft ${ }^{2}$

ORGANIC LOADING SOLUBLE BOD

TOTAL BOD
2.5-4 lbs BOD/day/1000 ft ${ }^{2}$

6-8

ACTIVATED SLUDGE CLARIFIERS ARE DESIGNED FOR...

- DETENTION TIME: $\mathbf{2} \mathbf{- 3} \mathbf{~ h o u r s ~}$
- SURFACE LOADING: 300-1200 gpd/ft²
-WEIR OVERFLOW RATE: 5,000 15,000 GPD/FT
- SOLIDS LOADING: 24-30 lbs/day/ft²

SOLIDS LOADING RATE

SLR=Ibs of SOLIDS/day / ft ${ }^{2}$

$$
\mathrm{lbs} / \mathrm{day}=C \times Q \times 8.34
$$

Where: $C=$ Suspended Solids concentration in ppm; $Q=$ flow in millions of gallons/day, and 8.34 is lbs/gallon

TYPICAL RANGE $=12-30 \# / \mathrm{day} / \mathrm{ft}^{2}$

SLUDGE VOLUME INDEX (SVI)

- A GOOD OPERATING TEST FOR SLUDGE CONSISTENCY

- RELATES THE SETTLEABLE SOLIDS TO THE SUSPENDED SOLIDS

SLUDGE VOLUME INDEX TEST

- 1 Liter of mixed liquor, settled for 30 minutes
- ON SAME BATCH, RUN SUSPENDED SOLIDS

SVI, $\mathrm{mL} / \mathrm{gm}=$ volume in mL of 1 gram (weight) of MLSS after 30 minutes

SVI EXAMPLE

FROM A SAMPLE OF MIXED LIQUOR YOU DETERMINE:

SETTLEABLE SOLIDS $=610 \mathrm{~mL} / \mathrm{L}$ SUSPENDED SOLIDS $=5580 \mathrm{mg} / \mathrm{L}$

> SVI $=610 \mathrm{ml} / \mathrm{L} / 5580 \mathrm{mg} / \mathrm{L} \times$ $1000 \mathrm{mg} / \mathrm{gm}=109 \mathrm{~mL} / \mathrm{gm}$

OPERATOR MATH

Wednesday 15 May 2024; 3.50-5p

Pressure and Head

Static Head

Pump and Motor Efficiencies Water to Wire Calculations

Pressure \& Head Calculation

- Pressure is the weight per unit area
- Pounds per square inch, lbs/in²
- Pounds per square foot, lbs/ft²
- Pressure on the bottom of a container is not related to the volume of the container, nor the size of the bottom.
- Pressure is dependent on the height of the fluid in the container.
- The height of the fluid in a container is referred to as Head. Head is a direct measurement in feet \& directly related to pressure.

Pressure and Head

$1 \mathrm{ft}^{3}$ of water weighs 62.4 \#/ft ${ }^{3}$
Based on: 7.48 gal/ft ${ }^{3} \times 8.34$ \#/gal $=62.4$ \#/ft ${ }^{3}$
Now, the bottom of this cube measures $12-\mathrm{in} \times 12-\mathrm{in}=144-\mathrm{in}^{2}$
The cube will then contain 144 columns of water 1 - ft tall \& 1 -in square

1 in Weight of 1 column =
62.4 \#/144 in ${ }^{2}=0.433$ \#/in² or
 0.433 psi

1 ft
Therefore, 1 Foot of water exerts a pressure of 0.433psi How many feet to exert 1 psi?

Some Pressure-Head Examples

- Convert 40 psi to feet of head \quad ANS $=92.4 \mathrm{ft}$
-What is the pressure in psi 112 feet below the top of a reservoir?

ANS $=48.5 \mathrm{psi}$

- What is the height of water in a storage tank on top of a $100-\mathrm{ft}$ hill if the pressure at the bottom of the hill is 65 psi ?

ANS $=50 \mathrm{ft}$

Static Head

Static discharge head is defined as the difference in height between the pump's horizontal center line and the maximum height of the free water surface on the discharge side of the pump.

Total static head is the total height that the pump must lift the water when moving it from one reservoir to another reservoir.

In a system where the reservoir feeding the pump is higher than the pump, the difference in elevation between the pump center line and the free water surface of the reservoir feeding the pump is...

In a system where the reservoir feeding the pump is lower than the pump, the difference in elevation between the center line of the pump and the free water surface of the reservoir feeding the pump is...

Pump and Motor Efficiencies

 motor or wire HP, HP m = electrical energy in HP supplied to motor; motor efficiency determines brake HPbrake HP, $\mathrm{HP}_{\mathrm{B}}=$ mechanical energy in HP supplied to pump shaft from motor; pump efficiency determines water HP
water HP, HPw = mechanical energy in HP transferred to water by pump

Water To Wire Calculations

Step 1: Calculate static head, H_{s}
Step 2: Calculate or determine friction losses, H_{L}
Step 3: Calculate TDH $=\mathrm{H}_{\mathrm{s}}+\mathrm{H}_{\mathrm{L}}$
Step 4: Calculate Water HP, where
$1 \mathrm{HP}=33,000 \mathrm{ft}-\# / \mathrm{min}$; for the weight of water
$1 \mathrm{HP}=\underline{33,000 \mathrm{ft}-\# / \mathrm{min}}=3957 \mathrm{gpm}-\mathrm{ft}$, then 8.34 \#/gal
$\mathrm{HPw}=\underline{\mathrm{Q}, \mathrm{gpm} \times \mathrm{TDH}, \mathrm{ft}}$ $3960 \mathrm{gpm}-\mathrm{ft} / \mathrm{HP}$

Water To Wire Calculations

Step 5: Calculate HP_{B} based on pump efficiency: $H P_{B}=H P_{w} / E_{p}$
Step 6: Calculate HP_{M} based on motor efficiency $\mathrm{HP} M=\mathrm{HP} / \mathrm{E}_{\mathrm{M}}$
Step 7: Calculate pumping costs based on HP_{M}, pump/motor assembly runtime and local power rate(s) for peak, off-peak, commercial, etc

